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4. The motion of a projectile 
We next consider the trajectory of a projectile, fired at an angle θ, and the initial speed v0.  
First we shall review the trajectory for motion of a particle in the gravitational field near the 
surface of the earth. The projectile is thought to move in the x –y plane only influenced by gravity, 
so the equation of motion is: 

4.1 The motion of a projectile without drag 
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  (The initial velocity) 

 
The motion is with constant acceleration, and the solution is:  
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 it is found by straightforward insertion: 
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The max height of the trajectory can be found by putting vy = 0   
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The width (in the x direction) of the trajectory, can be found by setting 
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The maximum width (length of the throw), is then determined by inserting the second value for t 
into the expression for x(t). The result it can be reduced to: 
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The longest throw is obtained when 04512sin   , as is well known from elementary 
physics. 
The trajectory is a parabola, by the way, since eliminating t en the expression for x and y leads to: 
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4.2 The motion of a projectile with drag (air resistance) 
We shall now consider the same motion as above, in the gravitational field of the earth, but this 
time paying to the inevitable resistance caused by the air.  
Here we shall however only be concerned with laminar flow, with is the same as saying that the 
drag force is proportional to and directed opposite to the velocity. 
For motion in the air, this is hardly applicable if the speed exceeds about 5.0 m/s, where the flow 
becomes turbulent, and the equations of motion do not have an analytic solution. 
    
With turbulent flow, the drag force can empirically be represented by Fdrag = vβ , where 21   . 
But we shall preliminary only be concerned with laminar flow.  
When the motion takes place in gasses, we can safely discard the buoyancy. So in that case: 
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The equation of motion becomes: 
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The differential equation (4.1) separates with respect to the x-direction and the y-direction. 
But we have already solved such an equation for a linear motion in (3.2) to (3.5). 
If the initial velocity is  )sin,cos( 00  vvv 


, we can simply copy the solution from (3.5). 
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Dropping all terms proportional to α, we retrieve the formulas (4.3) for the motion without drag. 
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We may also find the position ))(),( tytx , by integrating (4.7) with respect to t. 
Choosing (x0, y0) = (0,0), we get: 
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Dropping all terms, proportional to α, we retrieve the former expressions (4.3), derived without 
resistance. 
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Neither (4.8) nor (4.9) are particular transparent, when determining the maximum height or the 
width of the throw. It is actually possible to determine ymax, but we cannot determine xmax, since the 
equation y = 0 is transcendent.  
In a later section we shall however look at numerical solutions to differential equations. 
 
As mentioned, the equation of motion for a projectile can not be solved when assuming turbulent 
flow i.e. when the drag force is proportional to v2, Fdrag = α v2 . Below is shown a numerical 
solution with: α = 0 (no air resistance ) , α = 0.0001, α = 0.0005, α = 0.001. 
 
  

 

 

 

 

 

 

 

 
 


